同源重组原理示意图,同源重组双交换示意图

DNA分子同源重组过程中的问题

日本理化研究所日前发表新闻公报说,该所研究人员发现酵母线粒体中的DNA(脱氧核糖核酸)在一定条件下进行同源重组时,不像以前认为的那样需要DNA形成超螺旋。这一发现将为抗衰老等方面的生物医学研究提供新线索。
新闻公报说,记录生命遗传信息的DNA呈稳定的双链螺旋结构,但在复制、转录和重组等过程中,DNA链会出现一种超螺旋现象,这类似于螺旋状的电话线在受到外力时可能出现复杂的螺旋状态。
理化研究所的凌枫和柴田武彦等研究人员在酵母线粒体DNA的同源重组实验中,使用经过高度纯化的酶“Mhr1”进行催化,发现这种条件下的DNA同源重组不需要形成超螺旋,而是通过一种名为“三链体”的中间体进行。
凌枫对记者说,曾有研究证明“Mhr1”酶在抑制线粒体异质性上发挥着关键作用,此次研究揭示了其催化的反应机制核心。由于线粒体异质性与衰老等生理过程密切相关,理化研究所的这项研究为抗衰老等方面的生物医学研究提供了新线索。

2023-07-04 CRISPR-Cas9 基因编辑原理详解

股票首日上市,60%以上算高,80%以上就会有风险提示公告
非首日上市的,10%以上算高,20%以上就会进行席位披露

SnapGene软件教程之分子克隆功能&技术原理

最近在做克隆载体,入手了一款非常好用的软件 SnapGene 。网上教程挺多的,其中最推崇 四方居士 的 视频教程 ,在优酷上可以直接观看。

这款软件用来绘制图谱,编辑序列,设计引物,重组克隆都非常方便。对于克隆,在软件的Action工具栏内除了常规的限制性酶切插入克隆 ,PCR等常规操作,还列出了5种成熟的商业化的 无缝克隆 供使用者选择。这5种克隆技术分别是:

<!> 本文作为观后笔记,将四方居士讲解的克隆技术的原理进行文字记录和整理,以便收藏和分享。更多内容,请大家一定去观看四方居士的视频教程!

PCR是所有分子生物学实验的基础昌虚卖,全称为聚合酶链式反应,通过高温变性,退火和延伸反应三部曲来扩增目的DNA序列。通过引物的设计变化,扩增反应的组合,特殊酶的使用等等,基础的PCR反应可以有千万种变化。下面介绍两种在克隆构建中经常会被用到的PCR方法。

不论变种PCR设计得多么复杂,只要画成示意图,就能一目了然。真是一图抵千言。

如图所示,重叠延伸PCR中的“重叠”指的就是两组PCR的产物,通过引物引入一段相同的序列。这段相同的序列,使得两组PCR产物的单链能够在退火时结合,这种杂交产物在DNA聚合酶的帮助下延伸成完整的DNA双链。再通过最两端的引物对融合的长篇段DNA进行扩增。

需要注意的是,引物设计时引入的“重叠”序列是反向互补配对的。

重叠延伸PCR可以将两段DNA序列进行融合,通过这种方法可以构建融合基因,也可以用来将无法一次获得全长的DNA序列,通过分段扩增,再拼接的方法获得。此外,如果“重叠”序列也可以经过特殊设计,来引入一段插入序列,如酶切位点等。

由于引物与模版不完全互补配对并不影响延伸,所以用PCR引入突变主要是在引物上“做手脚”。(但注意,引物3‘末端的碱基必须互补配对!)

在引物上添加一段序列即可获得插入突变。这时候需要注意,对于表达序列,插入碱基的数目一定要是三的倍数,否则会造成阅读框移码。在引物上替换几个碱基也可以引入突变,一般用于表达产物的氨基酸突变。此外,还需要提防改造后的引物匹配到模版中的其它位置。这里可以提前用blast预测看看。

限制性酶切和连接是最常见的载体构建方法。利用限制性内切酶对DNA序列和载体质粒进行酶切,暴露出相同的黏性末端或者平末端,再利用DNA连接酶(一般是T4 ligase)进行连接。

由于限制性酶切和连接的方法依赖限制性内切酶的使用,构誉戚建成功与否取决于目的DNA和载体序列上是否存在合适的酶切位点以及对应的酶。因此开发出无缝克隆的技术,不依赖限制性内切酶,使得克隆更加便捷,应用范围更广。

Gateway Cloning,翻译成门途径克隆,是由invitrogen公司研发的技术,目前经过多轮收购,属于Thermo公司。Gateway的核心是利用λ噬菌体位点同源重组。

目的基因和载体基因ccdB的序列两段带有 att X 序列,这个 att X 可以看作是同源重组的“信号序列”,分为 "att B"、"att P"、"att L"、"att R" 四种。其中 "att B" 和 "att P" 通过BP重组酶进行交换(BP反应);其中 "att L" 和 "att R" 通过LR重组酶进行交换(LR反应)。

目的基因首先通过与供体质粒(Donor vector)进行BP反应,获得含有目的基因序列的克隆载体,算是“入门”。随后可以与多种目的载体进行LR反应,将目的基因置换到目的载体当中。

ccd B 是一种致死性基因,载体上表达 ccd B 时,感受态细胞无法存活,由耐逗此来清除Gateway cloning过程中的副产物。

吉布森无缝克隆是JCVI研究所的“吉布森”教授(Daniel G. Gibson)发明,利用DNA同源重组原理,比GAteway cloning更加简单,应用非常广泛,基本上各大公司都有相应的产品。

首先目的DNA和载体两段需要有15bp的同源序列。由于这段序列可以源自载体序列,通过PCR加到目的序列上,所以实际获得的拼接是无缝的。然后通过5‘外切酶是的目的序列和载体都暴露出单链DNA,形成类似于黏性末端的单链接头,退火使目的序列和载体互补配对,利用DNA聚合酶补齐末端缺失的碱基,再用DNA连接酶“缝合”切口,从而完成克隆。

看似用到多个酶的多步反应,通过混合酶或重组酶也可以Mix的体系,进行一步操作。

In-Fusion cloning是由clontech公司开发的,其原理与Gibson cloning大体相同,主要区别也是在于使用的酶,也属于专利产品。

NEB公司的高保真DNA组装与Gibson cloning的原理类似,使用的就是经过改造的重组酶,为其公司的专利产品。可以用一步反应进行DNA组装。它的特色还在于反应中使用的酶的高保真性。

NEB公司自己就拥有上述三种克隆方法对应的产品,官网中有对它们自家的三款产品平行比较。仅供参考。

TA克隆和GC克隆是最简单,也是最“小学生”的克隆。TA克隆利用Tag酶在PCR产物3‘末端加A的特性,设计对应5‘末端加T的载体与之配对。这样PCR的产物不用经过任何处理就可以与载体进行连接,一步完成。GC克隆与之相同,是利用了另一种DNA聚合酶3’末端加G的原理,当然目前这种酶用得越来越少了,几乎是停产,所以一般没人使用了。

同源重组原理

同源重组原理:非姐妹染色单体之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。

同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。

同源重组反应通常根据交叉分子或Holliday结构的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holliday 结构的拆分。

同源重组可以双向交换DNA分子,也可以单向转移DNA分子,后者又被称为基因转换。由于同源重组严格依赖分子之间的同源性,因此,原核生物的同源重组通常发生在DNA复制过程中,而真核生物的同源重组则常见于细胞周期的S期之后。

染色体联会和DNA同源重组到底是怎样的关系呢

联会时非姐妹染色单体交换片段啊~我认为这句话的意思就是因为非姐妹染色仿闷歼单体交换片段(导致罩大同源重组)所以才有了同源染色体联会现象,总不能非同源染色体之间随便交换片段吧……那样的备冲话基因不就完全乱套了吗~
不过出处神马的就不知道了……

Smartech是什么意思?

自己可以到网站看看

返回顶部